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Thermal diffusivity of rods, tubes, and spheres by the flash method
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The flash method is the most used technique to measure the thermal diffusivity of solid samples. It
consists of heating the front face of an opaque slab by a short light pulse and detecting the
temperature evolution at its rear surface, from which the thermal diffusivity is obtained. In this
paper, we extend the classical flash method to be used with rods, tubes, and spheres. First, the
temperature evolution of the back surface of solid cylinders, hollow cylinders, and spheres is
calculated. Then, experimental measurements of the thermal diffusivity on a set of stainless steel
samples confirm the validity of the method. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2183584�
The flash method is the most acknowledged technique to
measure the thermal diffusivity at high temperatures. In
many countries, it is currently considered a standard for ther-
mal diffusivity of solid materials. It was introduced by
Parker and coworkers1 and consists of heating the front face
of an opaque slab by a short laser pulse and detecting the
temperature evolution at its rear surface. The thermal diffu-
sivity is obtained by measuring the time corresponding to the
half maximum of the temperature rise �t1/2�, which is related
to the thermal diffusivity through the expression: t1/2

=0.1388L2 /D, where L is the sample thickness and D is the
thermal diffusivity. This procedure works under ideal condi-
tions: negligible laser pulse duration and heat losses. When
these requirements are not fulfilled, a fit to the complete
temperature history of the rear surface must be performed.

In this paper, we extend the classical flash method to be
used with nonplanar samples. In particular, solid cylinders,
hollow cylinders, and spheres are studied. We proceed as
follows. First, we calculate the temperature distribution when
these samples are illuminated by a modulated light beam.
The methodology used is based on the expansion in series of
Bessel and Hankel functions of the thermal waves, which are
generated at the sample surface. In this way, we obtain
equivalent results to those found by Mandelis and coworkers
using the Green’s function method.2,3 Then, starting from
these modulated solutions, we calculate the temperature evo-
lution of the sample after being heated by a short duration
light pulse, by using the inverse Laplace transform.

Let us consider an infinite and opaque hollow cylinder
with an outer radius a and an inner radius b, which is illu-
minated uniformly by a modulated light beam of intensity Io

and frequency f ��=2�f�. Its cross section is shown in Fig.
1�a�. The temperature oscillation at any point of the cylinder
can be written as4
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where q=�i� /D is the thermal wave vector, and Jm and Hm

are the mth order of the Bessel and Hankel functions of the
first kind, respectively. The first term in Eq. �1� represents
the ingoing cylindrical thermal wave starting at the sample
surface, while the second one is the corresponding reflected
wave at the inner surface. Equation �1� requires the knowl-
edge of Am and Bm that can be obtained from the heat flux
continuity at the cylinder surfaces
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where K is the thermal conductivity, and h and h� are the
heat transfer coefficients at the outer and inner surfaces,
FIG. 1. Geometry of �a� a hollow cylinder and �b� a solid sphere.
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respectively, that include convective and radiative losses.
The second member in Eq. �2a� represents the incident ther-
mal flux, whose value is �I sin �� /2 for 0���� and zero
o

thermal flux, whose value is �Io cos �� /2 for 0���� /2,
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for all other angles �see Fig. 1�a��, after being expanded in
Fourier series. Substituting Eq. �1� into Eqs. �2�, the tempera-
ture of the hollow cylinder is obtained

FIG. 2. Calculations of the normalized temperature rise
at the rear side after the absorption of a Dirac light
pulse. For a better comparison, the thickness of the slab
and the diameter of the three other samples are taken to
be equal �3 mm�. The hollow cylinder has an inner di-
ameter of 2 mm. �a� Negligible heat losses �h=h�=0�.
�b� Effect of heat losses �h=200 W m−2 K−1 and h�
=100 W m−2 K−1�.
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where R=h /Kq, R�=h� /Kq, and Jm� and Hm� are the deriva-
tives of the Bessel and Hankel functions, respectively. From
Eq. �3�, a simplified expression for a solid cylinder �b=0� is
obtained:
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Now we consider an opaque sphere of radius a illumi-
nated uniformly by a light beam of intensity Io modulated at
a frequency f . Its cross section is shown in Fig. 1�b�. The
temperature oscillation at any point of the sphere can be
written as5

T�r,�,�� = �
n=0

�

anjn�qr�Pn�cos �� , �5�

which represents a spherical thermal wave starting at the
sample surface. Here jn are the nth order of the spherical
Bessel functions and Pn the Legendre polynomials. Equation
�5� requires the knowledge of an that can be obtained from
the heat flux continuity at the sphere surface
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The second member in Eq. �6� represents the incident
and 0 for all other angles �see Fig. 1�b��, after being ex-
panded in Legendre series.6 Substituting Eq. �5� into Eq. �6�
the temperature of the sphere is obtained
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where jn� are the derivatives of the spherical Bessel.
Equations �4�, �3�, and �7� allow us to calculate the tem-

perature oscillation at any point of a solid cylinder, a hollow
cylinder and a sphere whose surfaces are periodically illumi-
nated, respectively. Then, using the inverse Laplace trans-
form, the temperature evolution after the absorption of a
light pulse can be calculated.7 Following this procedure, the
temperature rise of the rear surface of four stainless steel
samples �K=14.5 W m−1 K−1, D=3.7 mm2 s−1� after the ab-
sorption of a Dirac pulse has been simulated: �a� a
3 mm-thick slab, i.e., the classical configuration for the flash
method; �b� a solid cylinder of 3 mm in diameter whose
temperature is measured at the bottom pole, �=−� /2; �c� a
solid sphere of 3 mm in diameter whose temperature is mea-
sured at �=� and �d� a hollow cylinder with an outer diam-
eter of 3 mm and an inner diameter of 2 mm, whose tem-
perature is measured at �=−� /2. Their temperature histories
are shown in Fig. 2�a� for negligible heat losses �h=h�=0�.
For each sample, the temperature has been normalized to the
asymptotic value at long times. Calculations performed for a
wide variety of material properties indicate that the time re-

quired by the back surface to reach the half of the maximum
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temperature rise �t1/2� only depends on the thermal diffusiv-
ity and on the sample size, through the equation

t1/2 = A
d2

D
, �8�

where d is the thickness in the case of a slab or the diameter
�2a� in the case of a solid cylinder and a solid sphere. For
slabs, A is the well-known 0.1388,1 while for solid cylinders
and spheres, we found A=0.1068 and A=0.08840, respec-
tively. A simple formula has not been encountered for hollow
cylinders.

The influence of heat losses is shown in Fig. 2�b�, where
calculations have been performed with h=200 W m−2 K−1

and h�=100 W m−2 K−1. Note that for the same h value the
effect of heat losses in the temperature evolution increases as
we change from slabs to solid cylinders and to solid spheres,
the highest one being for hollow cylinders. This is due to the
fact that heat losses are proportional to the surface from
which heat is transferred, provided the same material is con-
sidered.

The validity of the theory has been tested experimentally
by measuring the following AISI-304 stainless steel samples:
A rod whose diameter is 4 mm, a hollow cylinder with an
outer diameter of 2.05 mm and an inner diameter of
1.55 mm, and a 2 mm thick plate that has been used as a
reference. Measurements have been performed by an infrared
thermography setup whose scheme is shown in Fig. 3. The
samples have been illuminated by a 6 kJ flash lamp and their
rear surface temperature has been measured by an infrared
camera �Thermacam SC 2000 from FLIR Systems� with a
focal plane array of 320�240 pixels working in the
8–12 	m spectral range at a frequency rate of 50 frames per
second. An infrared filter in front of the flash lamp is used to
cut its infrared emission. A variable slit is placed between the
lamp and the sample. Its width is fitted to the sample diam-
eter in order to guarantee uniform illumination of the sample.
A second slit is placed between the sample and the infrared

FIG. 3. Experimental setup.
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camera in order to prevent direct light from reaching the
detector. When using a Ge lens with a field of view of 24°
�18° together with a close-up lens, the minimum working
distance is 10 cm, allowing us to sample a rectangle as small
as 4.4 cm�3.1 cm. This means that each pixel measures the
average temperature over a square on the sample of 0.14 mm
in side. Therefore, for rods of 4 mm and 2 mm in diameter,
the pixel that corresponds to the center of the cylinder does
not measure the temperature just at �=−� /2, but the average
temperature over a sector of 4° and 8°, respectively. Theo-
retical calculations of the average temperature over such sec-
tors indicate that the error in the thermal diffusivity is less
than 0.5%.

In Fig. 4, the temperature rise with respect to the ambi-
ent after the flash light for the three samples under study is
shown by dots. In the case of the two cylindrical samples, the
temperature is the average of 100 pixels placed along the
cylinder axis. In the three cases, the temperature reaches a
constant value at long times after the flash light, indicating
that the influence of heat losses is negligible. Using Eq. �8�
D=3.76±0.10 mm2/s and D=3.70±0.14 mm2/s are ob-
tained for the slab and the rod, respectively. The error is the
standard deviation over 10 measurements performed in each
sample. The continuous lines in Fig. 4 are the fit to the the-
oretical model, i.e., to Eq. �3� for the tube, to Eq. �4� for the
rod, and to Eq. �3� in Ref. 1 for the slab. The fitted thermal
diffusivity of the tube is 3.84±0.16 mm2/s; while for the
slab and for the rod, the same thermal diffusivity values as
those found using Eq. �8� are obtained. All values are con-
sistent and fall inside the typical thermal diffusivity values of
AISI-304 that can be found in the literature
�3.7–4.0 mm2/s�.

This work has been supported by the MCyT �MAT2002-
04153-C02-01� and by the MEC �MAT2005-02999�.

1W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys.
32, 1679 �1961�.

2C. Wang, A. Mandelis, and Y. Liu, J. Appl. Phys. 96, 3756 �2004�.
3C. Wang, A. Mandelis, and Y. Liu, J. Appl. Phys. 97, 014911 �2005�.
4J. Sinai and R. C. Waag, J. Acoust. Soc. Am. 83, 1729 �1988�.
5N. B. Kakogiannos and J. A. Roumeliotis, J. Acoust. Soc. Am. 98, 3508
�1995�.

6G. Arfken, Mathematical Methods for Physicists �Academic, Orlando,
1985�, p. 654.

7J. C. Krapez, J. Appl. Phys. 87, 4514 �2000�.

FIG. 4. Temperature rise with respect to the ambient versus time after the
absorption of a flash light. Dots are experimental points and the continuous
lines are the fit to the theoretical models.
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