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Abstract The transient plane heat source (TPS) method is an experimental technique
for measurement of the thermal conductivity and diffusivity of solid materials. A
complete model based on the concentric circular strips structure of the TPS-sensor has
been developed. Rings, circles, and disk models were derived as special cases of the
strips, and all four models were compared. Both strips and circles models gave nearly
the same results and are recommended for TPS measurement evaluation. Moreover,
there was shown that the rings and circles models are incorrect because they lead to an
infinite temperature, which can be obviated by using the modified shape functions. In
addition, a new design of the electrical bridge was given and the stability of the input
heat power was verified by measurements on polymethylmetacrylate.

Keywords Concentric circular strips model · Polymethylmetacrylate · Thermal
conductivity · Thermal diffusivity · Transient plane heat source method

1 Introduction

In the light of the energy crisis, the use of better thermal insulation materials is
becoming more and more important. Knowledge of thermal conductivity and its pre-
cise measurement is crucial for a wide range of applications [1]. There are mainly
two approaches for thermal-conductivity measurements: steady-state and transient-
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state. The former uses a steady-state temperature field inside the specimen, which
requires long-time measurements. The latter is characterized by short-time measure-
ments, small specimens, and the possibility of obtaining the thermal diffusivity but
with complex measurement evaluation [2].

Transient methods utilize the heat source and thermometer, both placed inside the
specimen. The experiment consists in measuring the temperature response to the input
heat flux with a steady-state initial condition. The evaluation is based on determin-
ing the thermal conductivity and diffusivity by fitting the temperature function to the
temperature response. In the transient plane heat source (TPS) method, a TPS-sensor
serves simultaneously as the heat source and thermometer [3,4]. The sensor is com-
posed of a double spiral strip made from nickel and tightly sandwiched between two
specimen plates. The input heat power in the form of the stepwise function is produced
by the passage of an electrical current through the sensor.

The temperature function is a solution of the heat equation with boundary and initial
conditions corresponding to the experimental arrangement. An essential feature of the
solution is the model of the TPS-sensor. Gustafsson [3] gave a model of a certain
number of concentric ring sources (rings model) and a model with infinitely small
openings between circular strips (disk model). However, in reality the width of the
strips equals the width of the gaps. The aim of this study is to create the model very
close to this sensor structure. In addition, the integral in [3] results in a singularity
and cannot be computed. This is the main reason for the analysis of the TPS-sensor
models in this study.

2 Theoretical Model

The theoretical model of the TPS method is created by the following conditions:

– The sensor consists of a set of concentric circular strips.
– The thickness and heat capacity of the sensor are negligible.
– There is no thermal resistance between the sensor and specimen.
– The specimen is infinite in all directions.
– The input power in the sensor is stepwise.

The temperature field of the heated circle is a solution of the heat equation,

∂T

∂t
− k �T = w

ρc
, (1)

where k, ρ, and c are the thermal diffusivity, density, and mass heat capacity of the
surroundings, respectively, and the input heat power density is

w(t, �r) = P

2π R
δ(r − R)δ(z)1(t), (2)

where 1() is the Heaviside step function, δ() is the Dirac delta function, P is the input
heat power, R is the radius of the circle, and r , ϕ, and z are the cylindrical coordinates
of the vector �r . The initial and boundary conditions are

T |t=0 = 0 T ||�r|→∞ = 0. (3)
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Fig. 1 Model of the TPS-sensor
as a set of concentric strips
where a is the radius of the
sensor and i = 1 . . . N
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The solution of Eq. 1 will be

T (t, �r) =
∞∫

0

dt ′
∫

d�r ′G(t, �r, t ′, �r ′)w(t, �r)

ρc

= P

ρc
π−5/2

π∫

0

dϕ

t∫

0

dt ′
(
4kt ′

)−3/2e− r2+R2+2r R cos ϕ+z2

4kt ′ , (4)

where we used the Green’s function [5]. �r ′, t ′ represent the place and time of the
source (heated point) and �r , t represent the temperature field (measured point). The
temperature field of the j th strip in the plane z = 0 will be obtained by the superposition
as

Tj (t, r) = Pjπ
−5/2

ρc ln
(

R j +d
R j −d

)
R j +d∫

R j −d

dR

R

π∫

0

dϕ

t∫

0

dt ′
(
4kt ′

)−3/2 e− r2+R2+2r R cos ϕ

4kt ′ , (5)

where Pj is the power input into the j th strip defined in Fig. 1. The mean temperature
of the i th strip caused by the heated j th strip is

T i j = 1

2Ri d

Ri +d∫

Ri −d

rdrTj (t, r). (6)
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The mean temperature of the i th strip caused by all heated strips N is

T i =
N∑

j=1

T i j . (7)

The mean temperature of all strips (temperature function) will be obtained as the
weighted mean and using Eqs. 5–7, we have

T (t) =

N∑
i=1

T i Ri

N∑
i=1

Ri

= P

π
3
2 λa

D (τ ) , (8)

where P is the total input heat power into the sensor, λ = kρc is the thermal conduc-
tivity, a is the radius of the sensor, and τ = √

kt/a. The shape function [6] has the
form,

D (τ ) = a

8
√

πd

(
N∑

i=1
Ri

)2

N∑
i=1

N∑
j=1

R j

ln
(

R j +d
R j −d

)

×
Ri +d∫

Ri −d

rdr

R j +d∫

R j −d

dR

R

π∫

0

dϕ
erfc

(
1

2aτ

√
r2 + R2 + 2r R cos ϕ

)
√

r2 + R2 + 2r R cos ϕ
, (9)

where erfc is the complementary error function [5]. This formula is ready for numerical
evaluation. In order to compare this theory with that in [3] according to the correspon-
dence principle, the shape function will be rewritten as follows:

D (τ ) = 1

8d

(
N∑

i=1
Ri

)2

N∑
i=1

N∑
j=1

R j

ln
(

R j +d
R j −d

)

×
Ri +d∫

Ri −d

rdr

R j +d∫

R j −d

dR

R

τ∫

0

dσ

σ 2 e− r2+R2

4a2σ2 I0

(
r R

2a2σ 2

)
, (10)

where I0 is the modified Bessel function. The strips structure in Fig. 1 is defined by

Ri = (4i − 1) d, a = 4Nd (11)
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For very narrow strips d � Ri , Eq. 10 becomes

D (τ ) = 1

N 2 (N + 1 − 2B)2

N∑
i=1

(i − B)

N∑
j=1

( j − B)

×
τ∫

0

dσ

σ 2 e− (i−B)2+( j−B)2

4N2σ2 I0

(
(i − B) ( j − B)

2N 2σ 2

)
(12)

This is the shape function for the sensor consisting of a certain number of concentric
rings. The expression slightly differs from Eq. 23 in [3] which corresponds to the
sensor structure as Ri = 4id. To distinguish between both models, Eq. 12 will be
referred to as the circles model for B = 1/4 and as the rings model for B = 0. Here
it should be emphasized that from a purely mathematical point of view, Eq. 12 is
incorrect, because σ causes the singularity in zero. It could be shown for i = j as
follows:

τ∫

0

dσ

σ 2 e− (i−B)2+( j−B)2

4N2σ2 I0

(
(i − B) ( j − B)

2N 2σ 2

)
=

τ∫

0

dσ

σ 2 e− α

σ2 I0

( α

σ 2

)

= 1√
2πα

[ln |σ |]τ0 → ∞, (13)

where the asymptotic formula I0(x) ≈ ex/
√

2πx for x 	 1 has been used. Similarly,
we can get the shape function for the disk model of the TPS-sensor with infinitely
small openings between strips so that

d → 0, N → ∞, a = 2Nd (14)

and Eq. 10 becomes

D (τ ) =
1∫

0

udu

1∫

0

vdv

τ∫

0

dσ

σ 2 e− u2+v2

4σ2 I0

( uv

2σ 2

)
. (15)

3 Numerical Evaluation

In order to investigate the problem with the singularity in Eq. 12, we computed the
derivatives D′(τ ) of all shape functions for N = 16 and plotted them in Fig. 2. As τ

tends to zero, the curve for the strips model (Eq. 9) approaches 1.939 and the values
for the disk model (Eq. 15) go to 1. This can be verified by the following consideration.
For τ → 0, the strips model corresponds to one-dimensional heat flow into an infinite
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Fig. 2 Plots of the derivatives of the shape functions D(τ ) for strips model (solid line), rings model (dashed
line), circles model (x), and disk model (+)

medium [7] with the temperature function,

T (t) = q

λ

√
kt

π
, (16)

where q is the power per unit area dissipated by the sensor,

q = P

S
= P

πa2

4N

2N + 1
, (17)

Using Eqs. 8, 16, and 17, the shape function becomes

D (τ ) = 4N

2N + 1
τ = 1.939τ. (18)

Similarly, for the disk model we have D(τ ) = τ . For circles and rings models, S = 0
and thus D(τ ) → ∞. As all four plots in Fig. 2 are very similar for τ > 0.03, there is
a possibility to use them in experiment evaluation by constructing the modified shape
functions,

Dm (τ ) =
τ∫

0.03

D′ (σ ) dσ . (19)

Table 1 shows the shape functions of the strips and rings models and their relative
differences for the τ -range from 0.2 to 1. For reasons mentioned above, the modified
shape function of the rings model had to be used and also the function could not be
evaluated in zero. However, the differences presented in the table do not show how
they influence the results of the thermal conductivity and diffusivity measurements.

It is here important to remember that the TPS-sensor is a double spiral of a strip
source with a certain heat capacity. Although the strips model represents a more precise
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Table 1 Comparison of the
shape functions: s—strips
model, r—rings model

τ Ds Dr
Ds
Dr

− 1 (%)

0.2 0.180 0.176 2.3

0.4 0.311 0.304 2.3

0.6 0.405 0.397 2.2

0.8 0.471 0.462 2.1

1.0 0.518 0.508 2.0

solution than the rings model for very short times, it does not consider the heat capacity
of the sensor. This causes the non-zero rise time of the heating power, and its influence
is reduced by using a time correction tc and removing the deviating points at the
beginning of the transient [4]. The best solution of this problem is based on numerical
compensation of the input heat power variation [8].

The thermophysical parameters k and λ can be determined by fitting predicted
values of the mean temperature of the sensor,

T (t) = A + P

π3/2aλ
D

(√
k (t − tc)

a

)
, (20)

to the measured points [ti , Ti ] where A is a nuisance parameter. The thermal diffusivity
k and time correction tc will be iterated until the correlation coefficient of the depen-
dence of Ti versus D (ti ) reaches its maximum and λ is determined from the slope of
this line. In Eq. 20 the modified shape function can be used under the assumption that
τ > 0.03.

4 Experiment

The experiment was included in this paper in order to show the influence of the
applied models on the results of thermal conductivity and diffusivity measurements.
The resistance of the sensor is measured by using a two-channel nanovoltmeter and
the bridge illustrated in Fig. 3. At first the time dependence of the voltage across the
bridge u1 during the transient is measured. Before the heating current is turned off,
the voltage of the source u2 and both voltages U1 and U2 in the two-channel mode are
measured. The sensor resistance can be calculated as follows:

R (t) = (Rc + Rl)
Ua + u1 (t)

Ub − u1 (t)
− Rl, (21)

where Rc is a constant resistor and Rl is the resistance of one sensor lead which can
also be determined from the measurements as

Rl = Rc

2

u2 − U1 − U2

U2
. (22)
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Fig. 3 Bridge for sensor resistance R measurement using two-channel nanovoltmeter. Ra , Rb , and Rc are
constant resistors, and Rl is the resistance of the sensor lead. S is the switch for starting the experiment

Table 2 Results of the
measurement with various
values of input heat power,
evaluated using the strips model

P (mW) λ (W·m−1·K−1) a (mm2·s−1)

20 0.209 0.117

60 0.208 0.116

120 0.208 0.116

As we measure only at the laboratory temperature, the resistance of the sensor changes
less then 3 %. So the value of the constant resistor Rc can be set very close to the
sensor resistance R. This is necessary for keeping the power input constant during the
measurement [4]. The other advantages of the experimental arrangement in Fig. 3 are
described in detail in [9].

The measurements were performed at the laboratory temperature by using the sensor
Hot Disk AB Type 5501 with a number of rings (16), a radius of 6.4 mm, a resistance of
about 13 �, and a temperature coefficient of resistivity of 0.0048 K−1. The specimens
made from polymethylmetacrylate (PMMA) had a cylindrical shape with a diameter
of 30 mm and a thickness of 9 mm. The measurements were performed at various
values of the input heat power up to 120 mW, which corresponds to the total sensor
temperature increase in the experiment of 5.9 K. Experimental details and typical
graph of residuals, which indicate the quality of the measurement, were presented in
[9].

Table 2 shows that the results of the thermal conductivity and diffusivity measure-
ments are not dependent on the input heat power. This can be considered as evidence
that the input power is constant during the experiment. Hence, the measurements
can be done at higher values of the input heat power to achieve higher values of the
signal-to-noise ratio.

Table 3 shows the results of one measurement, but evaluated using all four methods
analyzed in this paper. The disk, circles, and rings models are compared to the strips
model using the relative differences.
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Table 3 Relative differences between the results of the measurement evaluated using various models.
Three models are compared to the strips model

Model Disk (%) Circles (%) Rings (%)

λ 2.0 0.2 −1.5

a −2.5 0.0 3.3

Three models are compared to the strips model

5 Summary

A new model of the TPS-sensor consists of a set of N concentric circular strips as
illustrated in Fig. 1. The temperature function is the solution of the heat equation and
is expressed by means of the shape function in two forms (Eqs. 9 and 10). The latter
was used to derive the shape function for the circles and rings models (Eq. 12) for
the case when the strips are infinitely narrow. Numerical evaluation and experiment
showed that the circles model gives nearly the same results as the strip one, and both
should be recommended for experiment evaluation. Rings and disk models introduced
a systematic error of about 2 % to 3 %.

The main problem consists in the fact that the formulas for the circles and rings
models (Eq. 12) are incorrect and lead to an infinite limit when τ tends toward zero
[10]. Taking into account the plots in Fig. 2, we can obviate the problem by introducing
the modified shape function (Eq. 19). Until now, this was the only way to evaluate
TPS measurements.
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